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Abstract
I present the ab initio phonon dispersions of face centered cubic Pb calculated within the
framework of density functional perturbation theory, with plane waves and a fully relativistic
ultrasoft pseudopotential which includes spin–orbit coupling effects. I find that, within the local
density approximation, the theory gives phonon frequencies close to the experimental inelastic
neutron scattering data. Many of the anomalies present in these dispersions are well reproduced
by the fully relativistic pseudopotential theory and can be shown to appear only for small values
of the smearing parameter that controls the sharpness of the Fermi surface.

The phonon dispersions of face centered cubic Pb (fcc-
Pb) were measured accurately in the 1960s by means
of inelastic neutron scattering [1], but since then their
theoretical interpretation has been a challenge and is still
a source of debate and surprises. Quite recently, an
unexpected coincidence between the binding energy of the
superconducting electron pairs and the energy of the phonon
at a Kohn anomaly [2] was found experimentally, by resonant
spin-echo neutron spectroscopy, for fcc-Pb and fcc-Nb [3].
In both cases, ab initio calculations could not reproduce or
explain the anomalies [3]. Apparently Pb seems to be a
relatively simple metal, with a Fermi surface similar to a free
electron sphere perturbed at the Bragg planes by the lattice
potential and several attempts to get its phonon dispersions
with model pseudopotentials have been reported [4–6]. In
practice, even modern ab initio methods have found difficulties
with the lattice dynamics of fcc-Pb due to the presence of
several anomalies and to the small values of the interatomic
force constants that make more evident the errors due to the
numerical and physical approximations.

The interatomic force constants of Pb, due mainly to sp
electrons, are quite small compared to the interatomic force
constants of noble and transition metals in which d electrons
contribute to the binding. For instance, at the zone-boundary
point X (q = (1, 0, 0)),1 the longitudinal (L) phonon is

1 Throughout the paper, q vectors are expressed in units of 2π/a0, where a0

is the fcc lattice constant.

62 cm−1 in Pb [1], 154 cm−1 in Au [7] and 193 cm−1 in
Pt [8]. Moreover, the phonon dispersions of Pb contain sudden
jumps of the slope in the frequency–wavevector curves. Some
of these jumps have been classified as Kohn anomalies [9],
and in some cases it has been relatively easy to support this
assignment by finding a nesting vector that joins two parts of
the Fermi surface with parallel tangents, but in other cases
the explanation was much less straightforward. For instance
it is still not clear whether the dips of the transverse (T)
and L branches at the X point are Kohn anomalies because
an appropriate nesting vector has not been easy to identify.
Actually the presence of spin-density waves was proposed
to explain this feature [10]. In several papers, it has been
pointed out that Pb with an atomic charge Z = 82 is a heavy
element for which relativistic and spin–orbit effects are quite
large and might play a role in the description of the lattice
dynamics [4, 5]. Some model pseudopotential calculations
addressed this issue but could not entirely reproduce the
experiment [11].

Pioneering first-principles calculations of the lattice
dynamics of Pb were presented in the 1990s [12–14]. In [12],
density functional perturbation theory (DFPT) [15] in a plane
wave pseudopotential (PP) context was applied to the problem.
The PP [16] was constructed with 6s and 6p valence electrons
and accounting for relativistic effects at the scalar relativistic
(SR) level [17]. The results were quite encouraging. The
main anomaly visible in the L branch along the � line (from
� (q = (0, 0, 0)) to K (q = (0.75, 0.75, 0)) to X) was
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reproduced accurately. At the X point the L phonon frequency
was overestimated by only 10 cm−1 while the frequency of
the transverse (T) mode was overestimated by about 5 cm−1.
Moreover, it was observed that the L phonon frequency was
decreasing by reducing the smearing parameter that controls
the sharpness of the Fermi surface, suggesting that a Kohn
anomaly not exactly reproduced by the calculation might
explain the dip at X in the Pb dispersion. The quantitative
error in the frequencies was attributed to the frozen core
approximation due to the presence of 5d electrons in the core.

A successive linear muffin-tin orbital (LMTO) all-electron
calculation removed the frozen core approximation [13], and
found that the L frequency at X was well reproduced. Only
the discrepancy of the T frequency at X could not be solved
and no anomaly was found. Both the all-electron and the
PP calculations were within the local density approximation
(LDA) although with two different formulae for the correlation
energy of the free electron gas. The theoretical lattice constants
turned out to be quite different, probably due both to the
different treatment of the 5d electrons and to the slightly
different functional. Another plane wave PPs [14] calculation
performed in the same period using the Wigner interpolation
formula for the exchange and correlation energy and the
nonlinear core correction [18] to account for the 5d electrons
was in substantial agreement with the results of [12], although
the lattice constant was closer to the experiment as in the all-
electron calculation.

More recently the phonon dispersions of Pb have been
revisited by a frozen phonon approach based on the projector
augmented wave (PAW) method [19]. This calculation found
that the LDA overestimates both the L and the T mode
frequencies at X as in [12]. The generalized gradient
approximation (GGA) provided overall better dispersions but
significant differences with experiment still remained [19].

So far all ab initio calculations of the Pb phonon
dispersions have been performed within the SR approximation.
It is therefore worthwhile to estimate, using modern first-
principles methods, the effects of the spin–orbit coupling on
the dispersions. Recently, I have generalized DFPT for lattice
dynamics to the fully relativistic (FR) ultrasoft PPs [20], which
account for spin–orbit coupling close to the nucleus where it is
expected to be important. For Au, the inclusion of spin–orbit
coupling was found to be irrelevant for the description of the
phonon dispersions. However for Pt, where there is a clearly
visible Kohn anomaly in the T1 phonon branch along the �

line, the SR and the FR PPs differed significantly close to the
Kohn anomaly and the FR-PP dispersion turned out to be closer
to experiment.

The purpose of this paper is to apply the above theory to
fcc-Pb and in particular to study some anomalies of its phonon
dispersions. I find that, within the local density approximation
(LDA), a FR-PP with 5d, 6s and 6p valence electrons gives
generally lower frequencies than a SR-PP made with the
same cut-off radii and the same electronic configuration.
The phonon frequencies of fcc-Pb are so low that spin–orbit
effects, although on an absolute scale quite small, significantly
improve the agreement with the experimental results. The main
anomalies visible in the phonon dispersions of Pb are well

reproduced by the method and can be shown to be compatible
with Kohn anomalies because they appear only for sufficiently
small values of the smearing parameter that determines the
sharpness of the Fermi surface.

Ultrasoft PPs [21] for Pb have been generated according
to a modified Rappe, Rabe, Kaxiras and Joannopoulos (RRKJ)
scheme [22] with three Bessel functions, following the method
of [23]. The 5d, 6s and 6p electrons are considered as valence
electrons.2 Two different PPs are generated. In the FR-
PP [24], the large components of the solutions of the radial
Dirac equation are taken as reference wavefunctions, while
in the SR-PP, the solutions of the Koelling and Harmon SR
equation [17] are taken as reference. The numerical results
are obtained within the LDA using the Perdew and Zunger
parameterization of the exchange and correlation energy [25].
A kinetic energy cut-off of 30 Ryd is used for expanding the
wavefunctions while the augmentation charges are expanded
up to 300 Ryd. For the Brillouin zone (BZ) integration,
uniform Nk × Nk × Nk k-point meshes are used. The presence
of a Fermi surface is dealt with by the smearing technique
of [26] with a smearing parameter σ = 0.01 Ryd. Initially, the
dynamical matrices have been computed with Nk = 24 on an
8×8×8 q-point grid and a Fourier interpolation has been used
to obtain complete phonon dispersions. Due to the presence
of several anomalies, this grid, sufficient to give a general
picture of the phonon dispersions, is not sufficient to reproduce
their fine details. In order to compare theoretical results and
experiment, instead of trying a larger calculation with a denser
q-point grid, I have calculated the phonon frequencies directly
using DFPT along special symmetry lines: the � line, from �

to X, the � line described above and the � line, from � to L
(q = (0.5, 0.5, 0.5)).3 In these calculations, the BZ sampling
has been done mainly with Nk = 32 and, in a few cases, with
Nk = 40 (see below). Finally, note that the results have been
corrected to account for the acoustic sum rule4. This procedure
affects by more than 1 cm−1 only the phonon frequencies from
� up to q = (0.05, 0.05, 0) along the � line, and the two points
q = (0.025, 0.025, 0.025) and q = (0.05, 0, 0).

In table 1, I report the equilibrium lattice constants, bulk
moduli, and cohesive energies of fcc-Pb obtained from a fit
with the Murnaghan equation of the total energy as a function
of the volume for the two PPs used in this paper. In the
same table, I report also some theoretical values present in the
literature together with the extrapolated T = 0 K experimental
values given in [19]. At T = 300 K the experimental lattice
constant is 9.35 au [28]. The SR and FR lattice constants are
very close to each other and differ by 0.5% from experiment, in
good agreement with the recent SR-PAW results [19]. The FR

2 I used as reference the all-electron configuration 5d106s26p2 for the SR-
PP and 5d4

3/25d6
5/26s2

1/26p2
1/2 for the FR-PP. The core radii (in au) of our PPs

are: 5d, 5d3/2, 5d5/2 (1.7, 2.2), 6p, 6p1/2 (2.9), 6p3/2 (3.0). The 6s potential
pseudized before rc = 2.2 has been taken as the local potential. Two values of
the core radii indicate a channel which has been pseudized with the ultrasoft
scheme. In such cases, the first value is the norm conserving core radius and
the second is the ultrasoft one. Nonlinear core corrections are not included in
the PPs.
3 The discretization was ((i − 1)�ζ, 0, 0) along the � line, (((i − 1)�ζ, (i −
1)�ζ, 0)) along � and (((i − 1)�ζ, (i − 1)�ζ, (i − 1)�ζ )) along � where i
is an integer and �ζ = 0.025 (�ζ = 0.05) along � and � (�).
4 I used the form of the acoustic sum rule reported (equation (81)) in [27].
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Table 1. Calculated LDA lattice constant (a0), bulk modulus (B0),
and cohesive energy (Ec) for fcc-Pb. The atomic energy is obtained
at the magnetic ground state (5d106s26p2) in the SR case and at the
nonmagnetic ground state (5d4

3/25d6
5/26s2

1/26p2
1/2) in the FR case.

Experimental data have been extrapolated to the zero-temperature
limit in [19].

fcc-Pb a0 (au) B0 (kbar) Ec (eV/atom)

FR-PP 9.23 496 2.5
SR-PP 9.23 520 3.7
SR-PP (BHS semilocal) [12] 9.01 516
SR-PAW [19] 9.21 530
Expt [19] (T → 0) 9.27 490 2.02a

a Reference [29].

Table 2. LDA frequencies of fcc-Pb calculated at selected points of
the BZ. All frequencies are in cm−1. Experimental data, at
T = 100 K, are from [1].

fcc-Pb XT XL W1 W2 LT LL

SR 41 71 55 62 34 80
FR 28 63 49 55 30 73
Expt 30 62 49 57 30 73

bulk modulus is slightly lower than the SR one but closer to the
experimental value. The phonon calculations are performed at
the theoretical lattice constant reported in table 1. As already
noted in [29], although 5d electrons are quite low in energy
(centered at 16.9 eV below the Fermi level in the SR case
and at 18.2 and 15.7 eV in the FR case), the inclusion of 5d
electrons in the valence has a significant effect on the lattice
constant. The PPs [16] used in [12] and built using only the
6s and 6p orbitals give a lattice constant that is 2.8% smaller
than that from experiment. The effect on the bulk modulus
is however less important. Finally, we note that the cohesive
energy calculated with the FR US-PP is about 1.2 eV lower
than the SR one which, on the other hand, is in agreement
with the value given in [29]. This large difference is due
to the reference atomic configuration used in the two cases.
Actually the SR magnetic ground state of the Pb atom has
higher energy than the FR nonmagnetic ground state because it
can be obtained with FR orbitals partially occupying the high
energy 6p3/2 levels, which are instead empty in the FR ground
state where the two 6p electrons are in the twofold-degenerate
6p1/2 level. The SR and FR energy difference between the fcc
and bcc structures at the T = 0 K experimental fcc volume is
much smaller. We find 2 mRyd (fcc is more stable than bcc)
in the FR case and a slightly higher value, 3 mRyd, in the SR
case, in agreement with [30].

The phonon frequencies calculated using the SR and the
FR PPs at a few selected points of the BZ are compared with
experiment in table 2. The FR frequencies are lower than the
corresponding SR frequencies. At the L point the difference
is about 4 cm−1 (T) and 7 cm−1 (L), while at X the difference
is larger (13 cm−1 (T) and 8 cm−1 (L)). The FR frequencies
agree with the experiment within a few cm−1 while the SR
frequencies are higher.

The FR LDA phonon dispersions of fcc-Pb are shown
in figure 1 along the main high symmetry lines of the BZ
of the fcc lattice and compared to the experimental inelastic

Figure 1. LDA phonon dispersions (solid lines) for fcc-Pb calculated
at the theoretical lattice constant compared to inelastic neutron
scattering data (solid diamonds) at T = 100 K [1]. A FR-PP with 5d,
6s and 6p valence electrons and an 8 × 8 × 8 Fourier interpolation
grid have been used.

neutron scattering data measured at 100 K. The experimental
frequencies plotted in figure 1 along the �, � and � lines
are taken from tables I and II of [1] and have a quoted error
of ±0.7 cm−1 or ±1 cm−1, while the points shown in the
X–W–X direction have been extracted from figure 5 of [1]
and have probably slightly larger errors. Our calculation is at
T = 0 K, but for Pb this is not a severe approximation. At
T = 100 K, anharmonic effects are expected to be quite small,
the most important one being the thermal lattice expansion.
As calculated in [19], the lattice constant expands by about
0.1% passing from T = 0 to 100 K. Zero-point motion, which
expands the lattice constant further, gives an even smaller
contribution [19].

Overall our theoretical FR dispersions improve the
agreement between theory and experiment with respect to
previous SR calculations [12, 14, 19], but the shape of these
dispersions is not sufficiently converged with respect to the size
of the Fourier grid. In [1], it was observed that the interatomic
force constants necessary to fit the fcc-Pb phonon dispersions
extend to a large number of neighbors, a fact attributed to the
large dips in the phonon frequencies at the X point. In our
Fourier interpolated dispersions, the flat T2 branch close to the
X point is not reproduced and a spurious oscillation appears in
the T branch along �. There is no anomaly in the L branch
along � and the oscillations of the T1 branch along � seem
to be opposite to the oscillations of the experimental points.
If compared with the detailed spin-echo measurements [3] the
deviations of the phase velocity from the average value of the
interpolated T1 branch would be opposite to the experimental
ones.

The phonon dispersions, calculated directly using DFPT
and with Nk = 32, are shown in figures 2 and 3. In these
dispersions the T2 branch close to the X point is flat and
the oscillation in the T branch along the � line disappears.
Moreover, an anomaly appears in the L branch along �, as
well as a sudden change of slope in the L branch close to X in
the � line. Along the � line the DFPT phonon frequencies
reproduce the experiment much better than the interpolated
curve and no new anomaly becomes visible. From these two
figures we can also estimate the error due to the BZ sampling
away from the anomalies. Actually the small discrepancies
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Figure 2. LDA phonon frequencies calculated using DFPT (empty
circles) for fcc-Pb compared to inelastic neutron scattering data
(solid diamonds) at T = 100 K [1]. The dashed lines show the
phonon dispersions of figure 1. The dispersions are shown along the
� line. Dashed vertical lines mark the positions of the points of the
Fourier grid. An enlarged view of the dispersion inside the square
(a) is presented in figure 7. A maximum error bar (±1.5 cm−1) is
shown on one experimental point.

Figure 3. Phonon dispersions of fcc-Pb along the � and � lines.
The symbols are the same as in figure 2. Enlarged views of the
dispersions inside the squares (b) and (c) are shown in figures 5
and 6, respectively.

between the interpolated dispersions and the calculated DFPT
points on the Fourier grid (indicated by dashed vertical lines
in figures 2 and 3) are due to the different Nk used in the
two calculations. At the L point in the L branch, where the
discrepancy is particularly large, there is a difference of about
1 cm−1.

Let us now focus on the dispersions contained within
rectangles in figures 2 and 3 which present anomalies in
the frequency–wavevector curves. In order to discuss these
anomalies, it is useful to look at the Fermi surface. A contour
plot of the Fermi surface in the (11̄0) plane is shown in figure 4
and it is calculated both with the FR and with the SR PPs. In the
same figure, I plot also the surface of a free electron gas with a
density of four electrons per fcc-Pb unit cell. In the (11̄0) plane

Figure 4. Fermi surface of fcc-Pb in the (11̄0) plane. Both the SR
(red line) and the FR (blue line) Fermi surfaces are shown. Two
nesting vectors v1 = −(0.32, 0.32, 0) + (2, 2, 0) and
v2 = (0.45, 0.45, 0.45) + (1, 1, 1) that correspond to the anomalies
in figures 5 and 6 are indicated. The circle shows, in the extended
zone, the Fermi sphere of a free electron gas with four valence

electrons in the unit cell of fcc-Pb. k p = sgn(kx )
√

k2
x + k2

y .

(This figure is in colour only in the electronic version)

Figure 5. Enlarged view of the FR phonon dispersion of the L
branch close to the point q = (0.32, 0.32, 0) (square (b) in figure 3)
along the � line. The dispersion is calculated with several values of
the smearing parameter σ which controls the sharpness of the Fermi
surface. σ = 0.1 Ryd (pentagons), σ = 0.05 Ryd (triangles),
σ = 0.02 Ryd (squares), σ = 0.01 Ryd (circles). Neutron scattering
data at T = 100 K [1] together with the associated error bars are
shown as filled diamonds.

the SR and FR Fermi surfaces do not differ qualitatively and
are in good agreement with the experimental measurements of
Anderson and Gold [31].

The anomaly of the L branch along � is shown in figure 5.
This anomaly has been found in almost all previous SR linear
response calculations and it is visible also when the phonons
are calculated by a frozen phonon technique [19]. The anomaly
appears around the vector q = (0.32, 0.32, 0) and has been
explained as a Kohn anomaly with the nesting vector v1 shown
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Figure 6. Enlarged view of the FR phonon dispersion of the L
branch close to the point q = (0.45, 0.45, 0.45) (square (c) in
figure 3) along the � line. σ = 0.1 Ryd (pentagons), σ = 0.05 Ryd
(triangles), σ = 0.02 Ryd (squares), σ = 0.01 Ryd Nk = 40 (circles)
σ = 0.01 Nk = 32 (small empty diamonds). Neutron scattering data
at T = 100 K [1], together with the associated error bars, are shown
as filled diamonds. The SR points are obtained with σ = 0.01 Ryd
and Nk = 40 (filled squares) and Nk = 32 (triangles).

in figure 4 which joins two flat regions of the Fermi surface [1].
In our calculation the radius of the Fermi surface at the points
connected by the vector v1 is 4% smaller than the radius of the
free electron Fermi sphere. The position of the anomaly is in
good agreement with this figure. The shape of the anomaly
depends on the smearing parameter that controls the sharpness
of the Fermi surface and actually the anomaly disappears for
σ = 0.05 and 0.1 Ryd. Therefore a well defined Fermi surface
is necessary for its description as expected for a Kohn anomaly.

The anomaly of the L branch along � is shown in figure 6.
This anomaly has been explained with the nesting vector v2 [1]
shown in figure 4. Like the previous one, this anomaly is not
found when the smearing parameter is σ = 0.05 or 0.1 Ryd. In
this direction the radius of the FR Fermi surface is 1.5% larger
than the radius of the free electron sphere corresponding to a
vector q = (0.45, 0.45, 0.45) in agreement with the position
of the anomaly. The SR Fermi surface has the same shape of
the FR Fermi surface, with a radius, in this direction, 1% larger
than the free electron sphere. Hence the SR dispersion curve
should have an anomaly at a vector q = (0.44, 0.44, 0.44).
This anomaly was not studied in previous papers so I have
recalculated it with the SR-PP. Figure 6 shows that the anomaly
is present also in the SR case although with a slightly different
position and shape. Its position is compatible with the vector q
deduced from the Fermi surface. The shape of the anomaly
converged on this scale of frequencies is quite difficult to
obtain. For σ = 0.01 Ryd, I have calculated the phonon
frequencies with Nk up to 40 the value used in the figure. In the
same figure the points obtained for Nk = 32 and σ = 0.01 Ryd
are also shown in order to illustrate the convergence of the
results with respect to the k-point sampling.

The dip of the L branch along � close to the zone-
boundary point X is shown in figure 7. The dispersion has
been calculated for the same values of σ as were used above.

Figure 7. Enlarged view of the FR phonon dispersion of the L branch
close to the X point along the � line. The dispersions are calculated
with different values of the smearing parameter σ which controls the
sharpness of the Fermi surface. σ = 0.1 Ryd (pentagons),
σ = 0.05 Ryd (triangles), σ = 0.02 Ryd (squares), σ = 0.01 Ryd
(circles). Neutron scattering data at T = 100 K [1], together with the
associated error bars, are shown as filled diamonds.

Changing σ from 0.01 to 0.1 Ryd, the frequency of the L
phonon at X increases by about 5 cm−1. The dip of the L
branch at X behaves like the other two anomalies and is quite
dependent on the sharpness of the Fermi surface, although
even with the largest smearing parameter it does not disappear
completely. The T branch at X instead increases only of 3 cm−1

passing from σ = 0.01 to 0.1 Ryd.
In closing, I make some comments on the accuracy of

the result. The agreement between theory and experiment
found in this paper is very satisfying but it is probably partly
fortuitous, and could be spoiled by unavoidable systematic
errors. Actually, in a plane wave pseudopotential phonon
calculation there are several sources of uncertainties larger than
the numerical error quoted above. The LDA is expected to be
a good approximation for a nearly free electron system such
as Pb but it could introduce errors much larger than 1 cm−1.
Actually for some difficult metals it has been found to give
discrepancies as large as 10 cm−1 or more [19, 32]. Moreover,
the PP approximation and the transferability properties of
the PP are a major source of errors on the frequency scales
analyzed in this paper. Uncertainties of a few cm−1 are quite
common. The calculated phonon dispersions of fcc-Pb with a
FR US-PP show that, within the LDA, the inclusion of spin–
orbit coupling lowers the phonon frequencies with respect to a
SR-PP. I have shown that the main anomalies present in the
phonon dispersions are reproduced by the theory. Three of
them have been calculated for different values of the smearing
parameter that controls the sharpness of the Fermi surface and
have been shown to reduce or disappear for large values of this
parameter, so their interpretation as Kohn anomalies is further
supported.
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calculations were performed on the SISSA-Linux cluster and
at CINECA in Bologna, by using the PWscf and PHONON
codes, contained in the quantum-ESPRESSO package [33].
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